banner
 
Home Page
Daily News
Tin Viet Nam

 
Mobile Version
 
Home
 
Saigon Bao.com
Saigon Bao 2.com
Mobile
Directory
 
Liên Lạc - Contact
 
Liên Lạc - Contact
 
 
 
News
 
China News
SaigonBao Magazine
United States
World News
World News - Index
 
America News
 
Brazil
Canada
Mexico
South America
United States
 
Europe News
 
Europe
France
Germany
Russia
United Kingdom
 
Middle East News
 
Middle East
Afghanistan
Iran
Iraq
Saudi Arabia
Syria
 
 
Disclaimer
SaigonBao.com

All rights reserved
 
 
 
 
Diem Bao industry lifestyle
 
science - mobile - computer - Internet - Defence
 
 
 
   
 
africa - asia - europe - middle east - south america
 
 
 
 

High-energy collisions

 
AI Chat of the month - AI Chat of the year
 

High-energy collisions, such as those in the Large Hadron Collider (LHC), can produce a wide variety of subatomic constituents. These include both elementary particles (which cannot be broken down further) and composite particles (made of quarks). Here's a comprehensive list:


1. Fundamental Particles (Standard Model Constituents)

Quarks (6 types, with their antiquarks)

  • Up (u)
  • Down (d)
  • Charm (c)
  • Strange (s)
  • Top (t)
  • Bottom (b)

Leptons (6 types, with their antiparticles)

  • Electron (e−e^-)
  • Electron neutrino (νe\nu_e)
  • Muon (μ−\mu^-)
  • Muon neutrino (νμ\nu_\mu)
  • Tau (τ−\tau^-)
  • Tau neutrino (ντ\nu_\tau)

Bosons (Force carriers)

  • Photon (γ\gamma): Electromagnetic interaction.
  • Gluons (gg): Strong interaction.
  • W bosons (W+,W−W^+, W^-): Weak interaction.
  • Z boson (Z0Z^0): Weak interaction.
  • Higgs boson (HH): Mass generation mechanism.

2. Composite Particles (Hadrons)

Baryons (3 quarks)

  • Protons (uuduud)
  • Neutrons (uddudd)
  • Hyperons (e.g., Lambda (Λ\Lambda), Sigma (Σ\Sigma), Xi (Ξ\Xi), Omega (Ω\Omega) particles).

Mesons (1 quark + 1 antiquark)

  • Pions (π+\pi^+, π−\pi^-, π0\pi^0)
  • Kaons (K+K^+, K−K^-, K0K^0)
  • Heavier mesons (e.g., J/ψJ/\psi, Υ\Upsilon).

3. Exotic Particles

High-energy collisions may also produce particles outside the usual stable or familiar states:

  • Resonances: Short-lived hadrons, such as Δ\Delta baryons or ρ\rho mesons.
  • Tetraquarks and Pentaquarks: Rare combinations of 4 or 5 quarks.
  • Glueballs: Hypothetical particles made entirely of gluons (still unconfirmed).

4. Secondary Particles

After the initial collision, primary particles may decay into lighter particles:

  • Muons (μ±\mu^\pm): From decays of heavier leptons or mesons.
  • Neutrinos (νe,νμ,ντ\nu_e, \nu_\mu, \nu_\tau): From weak interaction decays.
  • Photons (γ\gamma): From particle annihilation or transitions.

5. Hypothetical or Beyond-Standard-Model Particles

If new physics is discovered in high-energy collisions, it might include:

  • Supersymmetric Particles: E.g., neutralinos, sleptons.
  • Dark Matter Candidates: Weakly interacting massive particles (WIMPs).
  • Gravitons: Hypothetical carriers of gravity.

Summary

After a high-energy collision, the full range of particles includes:

  • Quarks, leptons, bosons from the Standard Model.
  • Composite hadrons (baryons, mesons).
  • Secondary particles from decay processes.
  • Hypothetical particles if new physics is involved.

The exact particles depend on the collision energy and the type of interaction occurring!

 
 
 
Home Page
 
 
News
 
ABC
AFP
AP News
BBC
CNN
I.B. Times
Newsweek
New York Times
Reuters
Washington Post
 
 
Asia News
 
Asia
Asia Pacific
Australia
Cambodia
China
Hong Kong
India
Indonesia
Japan
Korea
Laos
Malaysia
New Zealand
North Korea
Philippines
Singapore
Taiwan
Thailand
Vietnam